Privacy-Preserving Publishing of Moving Objects Databases
نویسنده
چکیده
Moving Objects Databases (MOD) have gained popularity as a subject for research due to the latest developments in the positioning technologies and mobile networking. Analysis of mobility data can be used to discover and deliver knowledge that can enhance public welfare. For instance, a study of traffic patterns and congestion trends can reveal some information that can be used to improve routing and scheduling of public transit vehicles. To enable analysis of mobility data, a MOD must be published. However, publication of MOD can pose a threat to location privacy of users, whose movement is recorded in the database. A user’s location at one or more time points can be publicly available prior to the publication of MOD. Based on this public knowledge, an attacker can potentially find the user’s entire trajectory and learn his/her positions at other time points, which constitutes privacy breach. This public knowledge is a user’s quasi-identifier (QID), i.e. a set of attributes that can uniquely identify the user’s trajectory in the published database. We argue that unlike in relational microdata, where all tuples have the same set of quasi-identifiers, in mobility data, the concept of quasi-identifier must be modeled subjectively on an individual basis. In this work, we study the problem of privacy preserving publication of MOD. We conjecture that each Moving Object (MOB) may have a distinct QID. We develop a possible attack model on the published MOD given public knowledge of some or all MOBs. We develop k-anonymity model (based on classical k-anonymity), which ensures that every object is indistinguishable (with respect to its QID) from at least k − 1 other objects, and show that this model is impervious to the proposed attack model. We employ space generalization to achieve MOB anonymity. We propose three anonymization algorithms that generate a MOD that satisfies the k-anonymity model, while minimizing the information loss. We conduct several sets of experiments on synthetic and real-world data sets of vehicular traffic to analyze and evaluate our proposed algorithms.
منابع مشابه
TrPLS: Preserving Privacy in Trajectory Data Publishing by Personalized Local Suppression
Trajectory data are becoming more popular due to the rapid development of mobile devices and the widespread use of location-based services. They often provide useful information that can be used for data mining tasks. However, a trajectory database may contain sensitive attributes, such as disease, job, and salary, which are associated with trajectory data. Hence, improper publishing of the tra...
متن کاملPrivacy Preserving Publication of Moving Object Data
The increasing availability of space-time trajectories left by location-aware devices is expected to enable novel classes of applications where the discovery of consumable, concise, and actionable knowledge is the key step. However, the analysis of mobility data is a critic task by the privacy point of view: in fact, the peculiar nature of location data might enable intrusive inferences in the ...
متن کاملارایه یک روش جدید انتشار دادهها با حفظ محرمانگی با هدف بهبود دقّت طبقهبندی روی دادههای گمنام
Data collection and storage has been facilitated by the growth in electronic services, and has led to recording vast amounts of personal information in public and private organizations databases. These records often include sensitive personal information (such as income and diseases) and must be covered from others access. But in some cases, mining the data and extraction of knowledge from thes...
متن کاملPrivacy-preserving Wireless Accesses to Cloud Services
The advent of smartphones in recent years has changed the wireless landscape. Smartphones have become a platform for online user interface to cloud databases. Cloud databases may provide a large set of userprivate and sensitive data (i.e., objects), while smartphone users (i.e., subjects) provide location-sensitive information. Secure and private services in wireless accessing to cloud database...
متن کاملLocation- and Time-Dependent VPD for Privacy-Preserving Wireless Accesses to Cloud Services
The advent of smartphones in recent years has changed the wireless landscape. Smartphones have become a platform for online user interface to cloud databases. Cloud databases may provide a large set of user-private and sensitive data (i.e., objects), while smartphone users (i.e., subjects) provide locationsensitive information. Secure and private services in wireless accessing to cloud database...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009